Optimal Design for Linear Models with Correlated Observations
نویسندگان
چکیده
In the common linear regression model the problem of determining optimal designs for least squares estimation is considered in the case where the observations are correlated. A necessary condition for the optimality of a given design is provided, which extends the classical equivalence theory for optimal designs in models with uncorrelated errors to the case of dependent data. For one parameter models this condition is also shown to be sufficient in many cases and for several models optimal designs can be identified explicitly. For the multi-parameter regression models a simple relation which allows verifying the necessary optimality condition is established. Moreover, it is proved that the arcsine distribution is universally optimal for the polynomial regression model with a correlation structure defined by the logarithmic potential. It is also shown that for models in which the regression functions are eigenfunctions of an integral operator induced by the correlation kernel of the error process, designs satisfying the necessary conditions of optimality can be found explicitly. To the best knowledge of the authors these findings provide the first explicit results on optimal designs for regression models with correlated observations, which are not restricted to the location scale model.
منابع مشابه
Optimal Design for Linear Models with Correlated Observations1 by Holger Dette,
In the common linear regression model the problem of determining optimal designs for least squares estimation is considered in the case where the observations are correlated. A necessary condition for the optimality of a given design is provided, which extends the classical equivalence theory for optimal designs in models with uncorrelated errors to the case of dependent data. If the regression...
متن کاملSensitivity Analysis of Spatial Sampling Designs for Optimal Prediction
In spatial statistic, the data analyzed which is correlated and this correlation is due to their locations in the studied region. Such correlation that is related to distance between observations is called spatial correlation. Usually in spatial data analysis, the prediction of the amount of uncertain quantity in arbitrary 4locations of the area is considered according to attained observations ...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملPresentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011